

Department of Agricultural Entomology Mahatma Phule Krishi Vidyapeeth Rahuri-413 722, Dist. Ahmednagar (MS)

Master's Programme in Agricultural Entomology

Course Layout

Minimum Credit Requirements

Sr. No.	Subject	Minimum credit(s)
1.	Major	20
2.	Minor	10
3.	Supporting	06
4.	Seminar	01
5.	Research	20
	Total Credits	57
	Compulsory Non Credit Courses	06

Sr.	Course	Course Title	Credits
No.	Number		
A) M	fajor subjects (M	(in. 21 credits)	
	ENT-501	Insect Morphology	1+1=2
	ENT-502	Insect Anatomy, Physiology and Nutrition	2+1=3
	ENT-504	Classification of Insects	1+1=2
	ENT-505	Insect Ecology	1+1=2
	ENT-507	Biological control of Crop Pests and Weeds	1+1=2
	ENT-508	Toxicology of Insecticides	2+1=3
	ENT-510	Principles of Integrated Pest Management	1+1=2
	ENT-511	Pests of field crops	1+1=2
	ENT-512	Pests of Horticultural and Plantations crops	1+1=2
	ENT-518	Techniques in plant protectin	0+1=1

B) M	linor Subjects (M	in. 10 credits)	
	MICRO-501	Principles of Microbiology	3+1=4
	Pl.Path506	Principles of Plant Disease Management	2+1=3
	MICRO-505	Microbial Biotechnology	2+1=3
C) S	upporting Subject	ts (Min. 06 credits)	
	BIOCHEM-510	Basic Biochemistry	2+1=3
	STAT-507	Design of Experiments for Plant Protection	2+1=3
D) S	Seminar (01 Cred	it)	
	ENT-591	Master Seminar	0+1=1
E) N	E) Master's Research (20 credits)		
		Master's Research	0+20=20
F) No	on Credit Compul	Master's Research sory Courses	0+20=20
F) No	on Credit Compul PGS-501	Master's Research sory Courses Library and Information Services	0+20=20 0+1=1
F) No	on Credit Compul PGS-501 PGS-502	Master's Research sory Courses Library and Information Services Technical Writing and Communications Skills	0+20=20 0+1=1 0+1=1
F) No	on Credit Compul PGS-501 PGS-502 PGS-503	Master's Research sory Courses Library and Information Services Technical Writing and Communications Skills Intellectual Property and its Management in Agriculture	0+20=20 0+1=1 0+1=1 1+0=1
F) No	on Credit Compul PGS-501 PGS-502 PGS-503 PGS-504	Master's Researchsory CoursesLibrary and Information ServicesTechnical Writing and Communications SkillsIntellectual Property and its Management in AgricultureBasic concepts in laboratory Techniques	0+20=20 0+1=1 0+1=1 1+0=1 0+1=1
F) No	on Credit Compul PGS-501 PGS-502 PGS-503 PGS-504 PGS-505	Master's Research sory Courses Library and Information Services Technical Writing and Communications Skills Intellectual Property and its Management in Agriculture Basic concepts in laboratory Techniques Agriculture Research, Research Ethics and Rural	0+20=20 $0+1=1$ $0+1=1$ $1+0=1$ $0+1=1$ $1+0=1$
F) No	on Credit Compul PGS-501 PGS-502 PGS-503 PGS-504 PGS-505	Master's Researchsory CoursesLibrary and Information ServicesTechnical Writing and Communications SkillsIntellectual Property and its Management in AgricultureBasic concepts in laboratory TechniquesAgriculture Research, Research Ethics and RuralDevelopment Programmes	0+20=20 $0+1=1$ $0+1=1$ $1+0=1$ $0+1=1$ $1+0=1$

Course Contents

Course Title : INSECT MORPHOLOGY

Course No. : ENT – 501

1+1=2

Theory Syllabus:

Lecture	Торіс	Weightage
No.		(%)
1.	Definitions, principles & Utility and relevance of insect	20
2.	Insect body wall: Structure, Chemical composition and	
	functions.	
3.	Cuticular appendages & Processes.	
4.	Body tagmata, segmentation.	
5.	Physical and pigmentary colours, physiological and morphological colour change	
6.	Origin of Insect head, head positions, structure of various areas sclerites and sutures of insect head	20
7	Tentorium sclerites	
8.	Types of mouth parts- typical chewing and biting type of mouth parts	
9.	Modification of mouth parts- chewing and lapping, siphoning and sponging type of mouth parts	
10.	Modification of mouth parts – Piercing & sucking and Rasping and Sucking.	
11.	Thorax – Sclerites, sutures areas of tergum, Sternum and pleuron pterothorax	30
12.	Wings – Sturcture, regions, margins and modifications	
13.	Wing coupling apparatus and mechanism of flight	
14.	Legs – Structure and modifications	
15.	Abdomen – Structure, sclerites, Reproductive and Non-reproductive appendages.	
16.	Structure of insect Egg. Cleavage and blastoderm.	30
	Vitellophages, formation of germ band, segmentation and gastrulation.	
17.	Post embryonic development, Types of metamorphosis.	
18.	Insect sense organs – mechanoreceptors, photoreceptors & chemo- receptors	

Practical No.	Торіс
1	Collection and Preservation of insects
2-5	Preparation of permanent mounts of different body parts & appendages.
6	Study of External structures of generalized insect-Cockroach
7	Study of various areas, sclerites and sutures of typical insect head and head positions
8	Study of generalized mouth parts of Insect chewing and biting type.
9	Study of modifications of mouth parts- Piercing and Sucking, Rasping and Sucking type
10	Study of modification of mouth parts- chewing & lapping, siphoning & sponging type
11	Study of cuticular appendages & processes of insect cuticle
12	Study of thoracic sclerites
13	Study of insect antennae
14	Study of insect legs
15-16	Study of insect wings
17	Study of Male & Female genetalia
18	Study and metamorphosis in insects

Suggested Readings:

Chapman RF. 1998. *The Insect : Structure and Function*. Cambridge Univ. Press, Cambridge.

David BV & Ananthkrishnan TN. 2004. *General and Applied Entomology*. Tata-McGraw Hill, New Delhi.

Duntson PA. 2004. *The Insect : Structure. Function and Biodiversity.* Kalyani Publ. New Delhi.

Evans JW. 2004. Outlines of Agricultural Entomology. Asiatic Publ., New Delhi.

Richards OW and Davies RG. 1977. *Imm's General Text Book of Entomology*. 10th Ed. Chapman & Hall, London.

Saxena RC & Srivastava RC. 2007. *Entomology: At a Glance*. Agrotech Publ., Academy, Jodhpur.

Snodgross RE. 1993. Principles of Insect Morphology. Cornell Univ. Press, Ithaca.

Course No.: ENT-502Course Title: Insect Anatomy, Physiology and NutritionCredit : 2+1=3Semester: I

Lecture	Торіс	Weightage
No.		(%)
1 &	Scope and importance of insect anatomy	40
2	and physiology	
3/4	Structure, modification and physiology of different systems -	
	Digestive system and physiology of digestion.	
5/6	Nervous system and physiology of nerve impulse transmission	
7/8	Male and female reproductive system and types of reproduction	
8/9	Respiratory system – physiology of respiration in Terrestrial and	
	aquatic insects	
10/11	Excretory system and physiology of Excretion	
12/13	Circulatory system	
14/15	Anatomy & Physiology of musculature system	30
16/17	Exocrine and Endocrine glands – structure & Function and role	
	in growth and development.	
18	Thermodynamics – Importance and scope	
20	Insect Integument – Physiology, moulting process/ Sclerotisation	
21/22	Metamorphosis and seasonal adaptations – Types/ significance of	
	metamorphosis - Adaptations - Diapause, hibernation and	
	aestivation	
25-24	Insect Nutrition – Introduction, role of insect nutrition in Pest	30
	Management	
25-26	Carbohydrates, Proteins and their role in Insect nutrition	
27/28	Proteins amino acids, vitamins minerals and other food	
	constituents	
29/30	Extra and Intra-cellular microorganisms and their role in	
	physiology	
31/32	Artificial Diet need and scope in insect rearing constituents,	
	process	

Practical	Торіс
No.	
1	Dissection of different insects to study comparative anatomical details – Digestive
	system
2/3	Male and Female Reproductive system.
4	Nervous system
5	Preparation of permanent mounts (Slides) of different internal systems.
6	Study of chromatographic analysis, instruments, principles and procedures
7	Chromatographic analysis of free amino acids of haemolymph.
8	Determination of chitin in insect cuticles.
9	Study of insect haemocytes.
10	Studies on determination of respiratory or quotient – principles and procedures.
11/12	Preparation of artificial diet- Helicoverpa armigera .Role and scope in insect rearing.
13/14	Evaluation of various diets for rearing insects.
15	Studies on utilization and consumption of natural diet
16	Rearing of insects on artificial diet.
17	Importation of natural enemies, Quarantine regulations
18	Visit to Bio-control Laboratory

Suggested Readings:

Chapman RF. 1998. Insect : Structure and Function. ELBS Ed., London.

Duntson, PA. 2004. Insect : Structure, Function and Biodiversity. Kalyani Publ., New Delhi.

Kerkut GA & Gilbert LI. 1995. Comprehensive Insect Physiology. Biochemistry and Paharmacology Vols. I-XIII. Pergamon Press, New York.

Patnaik B.D. 2002. Physiology of Insects. Dominant, New Delhi.

Richards, O.W. & Davies RG. 1977. *Imms' General Text Book of Entomology*. 10th Ed. Chapman & Hall, New York.

Saxena R.C. & Srivastava R.C. 2007. *Entomology: At a Glance*. Agrotech Publ., Academy, Jodhpur.

Wigglesworth V.B. 1994. Insect Physiology. 8th Ed. Chapman & Hall, New York

ENT: 504 Course Title: Classification of Insects (1+1=2)

Lecture No.	Торіс	Weightage (%)
1,2	Brief evolutionary history of insects	10
	Introduction to phylogeny to insects	
	Major classification of subclass Hexapoda	
	Classes – Ellipura (Collembola, Protura)	5
	Diplura & insecta	
3	Distinguishing characters, general biology, habits and habitats	5
	of insect's orders and economically imp. families contained in	
	them - Collembola	
	Protura & Diplura	
	Class Insecta subclass- Apterygota : Archaeognatha	5
	Thysanura	
4	Subclass –pterygota, Division-Palaeoptera Odonata	5
	Ephemeroptera	
	Division – Neoptea, Subdivision :	
	Orthoptheroid and Blattoid order :	
	Oligoneoptera : Plecoptera	
8-9	Blattodea, Isoptera	10
	Mantodea, Grylloblattodea	
	Dermaptera	
	Orthoptera	
10	Phasmatodea, Mantophasmatodea	10
	Embioptera, Zoraptera	
	Subdivision : Hemipteroid orders Paraneopteral : Pscoptera	
	Phthiraptera	
11	Thysanoptera	10
	Hemiptera	
12-13	Division : Neuroptera, Subdivision Endopterygota, Section	8
	Neuropteriod Coleopteroid orders : Strepsiptera	
	Megaloptera	
	Raphidoptera	
	Neuroptera	
14-15	Coleoptera	10
	Section : Panarorpoid, orders : Mecoptera, Siphonoptera,	
	Trichoptera	
16	Diptera	5
17	Lepidoptera	10
18	Section Hymenopteroid Orders : Hymenoptera	7

Practical	Торіс
1	Field visit to collect insects
2.	Study of orders of insects and their identification using taxonomic keys.
	keying out families of insects of different major of orders
3.	Odonata
4.	Orthoptera
5.	Blattoidea
б.	Mantoidea
7.	Isoptera
8.	Hemiptera
9.	Thysanoptera
10.	Field Visit for Collection
11.	Phthraptera
12.	Neuroptera
13.	Coleoptera
14.	Diptera
15.	Field visit for collection
16.	Lepidoptera (Contd)
17.	Lepidoptera
18.	Hymenoptera

Suggested Readings:

CSIRO 1990. The Insects of Australia: A Text Book of Students and Researchers. 2nd Ed. Vols. I & II, CSIRO. Cornell Univ. Press, Ithaca.

Freeman S & Herron JC. 1998. Evolutionary Analysis. Prentice Hall, New Delhi.

Richards OW & Davies RG. 1977. *Imm's General Text Book of Entomology*. 10th Ed. Chapman & Hall, London.

Ross HH. 1974. Biological Systematics. Addison Wesley Publ. Co.

Triplehorn CA & Johnson NF. 1998. *Borreor and DeLong's Introduction to the Study of Insects*. 7th Ed. Thomson/ Brooks/ Cole. USa/Australia.

ENT: 505 Course Title: Insect Ecology (1 + 1 = 2)

Lecture	Topic to be convened	Weightage
1	History & definition basic concept Organization of	10
	Biological world	10
2.	Plato's natural balance vs Ecological dynamics as the	
	modern view. Abundance & diversity of insects, estimates	
	and causal factors	
3,4	Study of abundance & distribution & relation between two.	15
	Basic principles of abiotic factors and their generalized	
~	action on insects	
5	Implication, abundance and distribution of organisms	
	including insect, Law of minimum, law of tolerance &	
6	Pasia concents of shundance model vs real world	15
0	population growth basic models. Exponential vs logistic	15
	models Discrete vs continuous growth models	
7 & 8	Concepts of carrying capacity. Environmental resistance	
	and optional yield. Vital statistics life to life & their	
	application to insect biology	
9.	Survivorship curves. Case studies of insect life table's	10
	population dynamic, factors affecting abundance	
	environmental factors dispersal & migration.	
10.	Seasonality insects, classification & mechanisms of	
	achieving different seasonality, Diapauses, aestivation	
11	nibernation Diotic factors food as a limiting factor for distribution and	15
11.	abundance Nutritional ecology Food chain – web and	15
	ecological succession	
12.	Interspecific interactions – Basic factors governing the	
	interspecific interactions. Classification of interspecific	
	interaction. The arguments of cost benefit ratios.	
13.	Competitions - Lotka - Voltera model, concept of niche -	15
	ecological homologous, competitive exclusion, Prey-	
	predator interactions	
14.	Defense mechanisms against Predator/Parasitoids Evolution	
	& mimicry, colouration, concept of predator satiation,	
15	Community acology concept & guild organizations of	20
15.	communities Hutchison Ratio	20
16	May's d/w, relation between the two and their association	
10.	with Dyar's Law and Prizibram's law.	
17.	Relative distribution of organisms, concept of diversity the	20
	wallacian view. Assessment of diversity.	
18.	Diversity - Stability debate, relevance to pest management.	
	Pest management as applied ecology	

Practical	Topic to be convened
No.	
1.	Types of distribution of organisms
2.	Methods of sampling insects, estimation of densities of insects and
	understanding the distribution parameters
3.	Measures of central tendencies, poison distribution Negative binomial
	distribution
4.	Determination of optimal sample size
5.	Learning to lit basic population growth models and testing the goodness
	of lit
6.	Fitting Hollings' disc equation
7.	Assessment of Prey-predator densities from natural systems,
	understanding the correlation between the two.
8.	Assessing and describing niche of some insects of a single guild
9.	Calculation of niche breadth, activity breadth
10.	Diagrammatic representation of niches of organisms
11.	Calculation of some diversity indices Shannon's, Simpson's and
	Avalanche index
12.	Understanding their associations and parameters that affect their values
13.	Problem solving in ecology
14.	Field visits to understand different ecosystems and to study insect
	occurrence in these systems.

Suggested Readings:

Chapman JL & Reiss MJ. 2006. *Ecology: Principles & Applications*. 2nd Ed. Cambridge Univ. Press, Cambridge.

Gotelli NJ & Ellison AM. 2004. *A Primer of Ecological Statistics*. Sinauer Associates, Inc., Sunderland, MA.

Gotelli NJ. 2001. *A Primer of Ecology* 3rd Ed. Sinauer Associates, Inc. Sunderland, MA. Gupta, RK. 2004. *Advances in Insect Biodiversity*. Agrobios. Jodhpur.

Krebs CJ. 1998. *Ecological Methodology*. 2nd Ed. Benjamin-Cummings Publ. Col. New York. Krebs CJ. 2001. *Ecology: The Experimental Analysis of Distribution and Abundance.*

5th Ed. Benjamin-Cummings Publ. Co., New York.

Magurran AE. 1988. *Ecological Diversity and its Measurement*. Princeton Univ. Press, Princeton.

Price PW. 1997. Insect Ecology. 3rd Ed. John Wiley, New York.

Real LA & Brown JH. (Eds.). 1991. Foundations of Ecology Classic Papers with Commentaries. University of Chicago Press, Chicago.

Southwood TRE & Henderson PA. 2000. *Ecological Methods* 3rd Ed. Methuen & Co. Ltd., London.

Speight MR, Hunta MD & Watt AD. 2006. *Ecology of Insects: Concepts and Application*. Elsevier Science Publ., The Netherlands.

ENT: 507 Course Title: Biological Control of Crop Pests & Weeds (1+1=2)

A) Theory:

Lecture	Topic to be convened	Weightage
No.		(%)
1	History, principles & Scope of Biological Control	20
2	Important groups of parasitoids, predators & pathogens	
3 & 4	Principles of classical Biological Control, Importation, Augmentation & Conservation	
5 & 6, 7	Biology, adaptation, host seeking behavior & semio- chemicals of predatory & parasitic groups of insects	20
8 & 9, 10	Role of insect pathogenic nematodes, viruses, bacteria, fungi, protozoa, etc. & their mode of action	
11 & 12	Biological control of weeds using insects	
13 & 14	Mass production techniques of quality Biocontrol agents, formulations, economics, field release/ application & evaluation	30
15 & 16	Successful Biocontrol, projects, analysis, trends and future possibilities of Biocontrol	30
17	Importation of NEs, Quarantine regulations	
18	Biotechnology in Biological Control	

B) Practical:

Practical No.	Торіс
1	Collection, Isolation and preservation of – Parasitoids
.2	Collection, Isolation and preservation of – Predators
3 & 4	Collection, Isolation and preservation of – Microbes
5	Collection, Isolation and preservation of Weed Killers
6-8	Mass Production techniques of Parasitoids
9-10	Mass Production techniques of Predators
8&9	Mass Production techniques of Microbes
11-13 & 14	Mass Production techniques of Weed Killers
15,16	Quality Control & Registration Standards
17,18	Visit to Bio-control Laboratory

Suggested Readings:

Burges, H.D. & Hussey, N.W. (Eds.) 1971. *Microbial Control of Insects and Mites.* Academic Press, London.

De Bach, P. 1964. *Biological Control of Insect Pests and Weeds*. Chapman & Hall, New York.

Dhaliwal, G.S. & Arora, R. 2001. Integrated Pest Management : Concepts and Approaches. Kalyani Publ., New Delhi.

Gerson, H. & Smiley, R.L. 1990. Acarine Biocontrol Agents – An Illustrated Key and Manual. Chapman & Hall, New York.

Huffaker, C.B. & Messenger, P.S. 1976. *Theory and Practices of Biological Control.* Academic Press, London.

Ignacimuthu, S.S. & Jayaraj, S. 2003. *Biological Control of Insect Pests*. Phoenix Publ., New Delhi.

Saxena, A.B. 2003. Biological Control of Insects Pests. Anmol Publ., New Delhi.

Van Driesche, & Bellows

ENT- 508 Course Title: Toxicology of Insecticides (2+1=3)

A) Theory:

Lecture	Торіс	Weightage
No.		(%)
1	Definition and scope of insecticide toxicology, history of	10
	chemical control	
2	Pesticide use and pesticide industry in India	
3,4,5	Classification of insecticides and acaricides based on mode of	30
	entry, chemical nature, mode of action, chemical composition	
6&7	Structure & mode of action of organochlorines	
8&9	Structure & mode of action of carbamates & organophosphate	
10	Structure & mode of action of pyrethroids	
11-12	Neonicotenoids & spinosad and avermectins	
13	Oxadiazines & Phenyl pyrazoles	
14	Insect Growth regulators	
15	Botanical pesticides	
18-19	Principles of toxicology	20
20 & 21	Evaluation of insecticide toxicity	
22 & 23	Joint action of insecticide, synergism, potentiation &	
	antagonism	
24 & 25	Factors affecting toxicity of insecticides	
26 & 27	Insecticide compatibility, selectivity, phytotoxicity	
28 & 29	Insecticide metabolism, pest resistance to insecticides	20
30,31,	Mechanism & types of resistance, insecticide resistance	
32	management	
33, 34	Insecticide residues, their significance & environmental	20
	implications	
35 & 36	Safe use of insecticide symptom of poisoning & first aid and	
	antibiote	

B) Practical:

Practical	Topic to be convened		
No.			
1, 2 & 3	Study of quality parameters of insecticide formulations and mixture		
4 & 5			
6 & 7,8	Field evaluation of insecticides for their bioefficacy phytotoxicity and		
	compatibility.		

9,10	Bioassay techniques / probit analysis
11 & 12	Evaluation of toxicity of insecticides, joint action & co-toxicity coefficient
13, 14	Toxicity of insecticides to beneficial insects
15	Good laboratory practices
16	Visit to toxicological laboratories

Suggested Readings:

Chattopadhyay SB. 1985. *Principles and procedures of Plant Protection*. Oxford & IBH, New Delhi.

Gupta HCL. 1999. Insecticides : Toxicology and uses. Agrotech Publ., Udaipur.

Ishaaya I. & Degheele (Eds.). 1998. *Insecticides with Novel Modes of Action*. Narosa Publ. House, New Delhi.

Matsumura F. 1985. Toxicology of Insecticides. Plenum Press, New York.

Perry AS, Yamamoto I., Ishaaya I & Perry R. 1998. Insecticides in Agriculture and Environment. Narosa Publ. House, New Delhi.

Prakash A & Rao J. 1997. Botanical Pesticides in Agriculture. Lewis Publ. Neo York.

ENT: 510 Course Title: Principles of IPM (1+1=2)

Lecture	Торіс	Weightage
No.		(%)
1	History of Pest management	20
2	 Origin of pest Management, 	
	 Definitions 	
	 Evoluation of various related terminologies 	
4	Understanding the agricultural ecosystem, Planning the	20
	Agril. ecosystem, cost/ benefit, benefit/risk, Tolerance of	
	pest damage, Ecological principles	
5	Economic injury level, Economic threshold level,	
	Determination of economic threshold	
7	Integration of tactics, essential requisites for decision	40
	making in IPM, Decision making system	
8	Constraints in IPM implementation, Strategies for IPM	
	implementation.	
9	IPM and sustainable Agriculture, Potential in IPM	
10	Tools of pest management- cultural, physical & Legislative	
	control, Historical acts, The insecticide Act, 1968, Central	
	bodies and laboratories	
11	Registration of insecticides, Licenses for manufacture and	
	sale, central insecticides laboratory, state insecticides	
	testing laboratory, Prevention of Food Adulteration Act,	
	1954	

12	Cultural control – Planting time, seed, plant spacing, Tillage, plant diversity, crop rotation, Nutrient management, water management, sanitation, Harvesting practices	
13	Physical control – Hot or cold treatment, moisture, Light traps, mechanical control – Hand picking, exclusion by screens and barrier, Trapping and suction devices, clipping, pruning and crushing, integration with other tactics	
14	Pest survey and surveillance. Forecasting	20
14	r est survey and survemance, r orecasting,	20
14	Area wide control of insect pests (fruit fly)	20
14	Area wide control of insect pests (fruit fly) Types of surveys including remote sensing methods, factors affecting surveys	20
14 15 16	Area wide control of insect pests (fruit fly) Types of surveys including remote sensing methods, factors affecting surveys Political, social and legal implications of IPM	20
14 15 16 17	Area wide control of insect pests (fruit fly) Types of surveys including remote sensing methods, factors affecting surveys Political, social and legal implications of IPM Pest risk analysis, pesticide risk analysis and partial budgeting	20

Practical	Торіс
No.	
1 & 2	Characterization of Agro ecosystem
3 & 4	Sampling methods – Sequential sampling, variable intensity sampling, double
	sampling binomial sampling estimating abundance of natural enemies
5&6	Factors affecting sampling nature, size and number of samples, Crop loss
	assessment, direct losses, indirect losses, avoidable losses, unavoidable losses.
7 to 9	Population estimation methods,
	Absolute estimates, Relative methods,
	Population indices, Life tables
10 to 14	Computation of EIL and ETL
15	Crop modeling
16	Designing & IPM
17 & 18	Implementation of IPM

Suggested Readings:

Dhaliwal, G.S. & Arora R. 2003. Integrated Pest Management – Concepts and Approaches. Kalyani Publ., New Delhi.

Dhaliwal. G.S., Singh, R. & Chhillar, B.S. 2006. *Essentials of Agricultural Entomology*. Kalyani Publ., New Delhi.

Flint, M.C. & Bosch, R.V. 1981. Introduction to Integrated Pest Management. 1st Ed., Springer, New York.

Horowitz, A.R. & Ishaaya, I. 2004. Insect Pest Management : Field and Protected Crops. Springer, New Delhi.

Ignacimuthu, S.S. & Jayaraj, S. 2007. *Biotechnology and Insect Pest Management*. Elite Publ., New Delhi.

Metcalf, R.L. & Luckman, W.H. 1982. *Introduction to Insect Pest Management*. John Wiley & sons, New York.

Pedigo, R.L. 2002. *Entomology and Pest Management*. 4th Ed. Prentice Hall, New Delhi.

Norris, R.F., Caswell-Chen, E.P. & Kogan, M. 2002. Concepts in Integrated Pest Management. Printice Hall, New Delhi.

Subramanyam, B. & Hagstrum, D.W. 1995. Integrated Management of Insect in Stored products. Marcel Dekker, New York.

ENT: 511 Course Title : Pests of Field Crops (1+1=2)

A) Theory:

Lecture No.	Торіс	Weightage (%)
1/2	 Systematic position, marks of identification distribution, host range, biology, seasonal incidence and management system. Pests of Rice – Stem borer, Green leaf and Brown Plant hopper, leaf roller, gall midge, Army worm, Rice hispa, Blue beetle etc. 	10
3/4	Pests of Sorghum – Stem bores, shootfly, midge, Jassids, ear head caterpillar, Pests of maize, stem borers and leaf eating caterpillars, pests of wheat – stem borer, aphids and rodents.	20
5&6	Polyphagous pests – Armyworm, white grubs, cutworm, Termites, <i>Helicoverpa, Spodoptera</i> and Locust	15
7	Non insect Pests – Rodents, mites, Snail & slugs and birds	10
8-9	Pest of pulses – Borer complex, mites	5
10-11	Pests of oilseeds – Groundnut leaf miner, thrips, pod flies white grubs, caster semi looper, leaf eating caterpillar, capsule borer	5
12-13	Pests of Tobacco & safflower aphids, leaf eating, caterpillars, cut worm, safflower aphids, sunflower leaf eating caterpillar ,mustard sawfly.	5
14-10	Pests of fiber crops – Sucking pest complex, boll worm complex, IPM	10
15-16	Pests of sugarcane – Borers complex, white grub, white woolly aphids, & mites	10
17	Pests of forage & their management	5
18	Field visit	5

B) Practical:

Practical	Торіс
No.	
1 -18	Field visits, collection and identification of important pests and their natural
	enemies, detection and estimation of infestation and losses in different crops,
	study of life history of important insect pests

Suggested Readings:

١

Atwal, AS, Dhaliwal, G.S. & David, B.V. 2001. *Elements of Economic Entomology*. Popular Book Depot, Chennai.

Dhaliwal, G.S., Singh, R. & Chhillar, B.S. 2006. *Essentials of Agricultural Entomology*. Kalyani Publ., New Delhi.

Dunston, A.P. 2007. *The Insects : Beneficial and Harmful Aspects*. Kalyani Publ., New Delhi.

Evans, J.W. 2005. Insect Pests and their Control. Asiatic Publ., New Delhi.

Nair MRGK. 1986. Insect and Mites of Crops in India, ICAR, New Delhi.

Prakash, I. & Mathur, R.P. 1987. Management of Rodent Pests. *ICAR*, *New Delhi*.

Saxena, R.C. & Srivastava, R.C. 2007. *Entomology at a Glance*. Agrotech Publ. Academic, Jodhpur.

ENT: 512 Course Title: Pests of Horticultural and Plantation Crops Credits: (1+1=2)

A) Theory:

Systematic position, identification, distribution, host range, bionomics and seasonal abundance, nature of loss, seasonal history, their integrated management.

Lecture	Topic to be convened	Weightage
No.		(%)
1.	Mango	30
2.	Guava, banana, jackfruit, papaya	
3.	Pomegranate, litchi, grapes	
4.	Ber, fig, aonla	
5.	Citrus	
6.	Pineapple, apple, peach & temperate fruits	
7.	Tomato, potato, brinjal, okra	30
8.	Raddish, carrot, beetroot, cole crops	
9.	French bean, onion, garlic	
10.	All gourds	
11.	Gherkin, drumstick, leafy vegetables	
12.	Coffee, tea, rubber	25
13.	Coconut, areca nut	
14.	Cashew, cocoa	
15.	Pepper, cardamom, clove, chillies	
16.	Turmeric, ginger, beetle vine	
17.	Ornamental, medicinal ,and aromatic crops	15
18.	Protected cultivation	

Practical	Topic to be convened				
1 Q	Collection preservations and identification of important pasts of				
1-0	horticultural crops				
9-12	Collection, preservations and identification of natural enemies of pests of horticultural crops				
13-18	Study of life history of important insect pests and natural enemies				
	Apple, peach & temperate fruits				
	Potato				
	All gourds				
	Coconut				
	Cardamom, nutmeg				
	Medicinal plants				
	Aromatic crops				
	Protected cultivation				
	Polyhouse				
	Field visit				
	Rearing techniques of important pests				
	Field visit				

Suggested Readings:

Hall, D.W. 1970. *Handling and Storage of Food Grains in Tropical and Subtropical Areas*. FAO. Agricultural Development Paper No. 90 and FAO, Plant Production and Protection Series No. 19, FAO. Rome.

Jayas, D.V. White, N.D.G. & Muir, W.E. 1995. *Stored Grain Ecosystem*. Marcel Dekker, New York.

Khader, V. 2004. *Textbook on Food Storage and Preservation*. Kalyani Publ., New Delhi.

Khare, B.P. 1994. Stored Grains Pests and Their Management. Kalyani Publ. New Delhi.

Subramanyam, B. & Hagstrum, D.W. 1995. Interrelated Management of Insects in Stored Products. Marcel Dekker, New York.

ENT- 518 Course Title: Techniques in plant protection (0+1=1)

Practical:

Lecture	Unit	Topic to be convened	Weightage
No.			(%)
1	Ι	Plant protection equipments	30
2		Principles & operation of plant protection	
		equipments	
3		Selection & application of pesticides	
4		Selection and application of bio-agents	
5		Seed dressing, soaking, root-dip-treatment	
6		Dusting, spraying and application of insecticides	
		through irrigation water	

7	II	Soil solarization, sterilization, deep ploughing &	10
		flooding	
8		Techniques to check the spread of pests through	
		seed, bulb, cors, cuttings & cut flowers	
9	III	Use of light, transmission & scanning electron	10
		microscopy	
10	IV	Protein isolation from pests & host plants	30
11		Quantification of protein by using	
		spectrophotometer	
12-13		Molecular weight determination using SDS/PAGE	
14-15	IV	Use of Tissue culture techniques in plant protection	20
16-17		Computer application for predicting and forecasting	
		pest attack	
18		Computer application for identification of pests	

Suggested Readings:

Alford, D.V. 1999. A Textbook of Agricultural Entomology. Blackwell Science, London.

Crampton, J.M. & Eggleston, P. 1992. Insect Molecular Science. Academic Press, London